哈斯日志
纪录我们在网路上奔波的历程!
  • »新帖子
  • 俞军和他的产品经理课
  • 为什么我们都对搜索不满意却又无可奈何
  • 搜索产品市场机会探讨:头条不做搜索做什么
  • 搜索产品市场机会探讨
  • 搜索产品市场机会探讨
  • 我教怎么在微信上通过bot做知识管理的
  • 今日头条搜索跟百度的简单体验对比
  • 创新是怎么发生的,我们抽象的到文化、逻辑和符号角度,看他们是怎么互相发生作用的
  • 自动化高效率地使用微信聊天机器人运营和增长私域流量
  • 人是怎么学习知识,机器算法能不能模拟人类进行信息自我学习和迭代

  • Reward hasiblog
    碎片化阅读、海量信息时代的轻量级知识管理-哈斯日志
    碎片化阅读、海量信息时代的轻量级知识管理
    星期六, 十二月 28, 2019


    个人知识管理(PKM)是一种以发现整理组织和加工、并应用的个人信息管理实践,它可以帮助个人从自己的经验、阅读、思考心得等角度,挖掘文章、链接等多种信息素材,进行整理加工,形成知识库,为个人竞争情报应用,我们在日常工作、生活中捕捉我们遇到的想法和见解,并随着时间的推移进行培养以产生更具创造性,更高质量的认知、经验和工作方法,看了Tiago Forte这篇阐述个人知识管理的思考文章,非常有认同感,亦如他在网上课程“ 培养第二只大脑”中教人们如何掌握PKM ,我也把他的文章和我的阅读理解,分享给大家。


    知识信息管理就是通过在我们头脑之外的地方,收集整理管理我们发现、需要、有用的、高权威的知识信息,并以“第二大脑”为支持,帮助我们我们更好的应用知识信息创建创新输出,从而促进个人成长、职业事业发展,开展业务或追求激情。通过将这些数字化的知识信息的收集,我们可以重复搜索、阅读、使用,并且通过备份,设备间同步,与他人共享等,来获得更多知识信息观点和经验的交互。


    关于知识管理系统的思考和应用


    Tiago Forte早期不主张使用标签,认为标签太费力,过于复杂,对个人所需发挥的价值低。他建议人们使用笔记本或文件夹来进行信息或者知识管理(分类目录和文件的形式,如之前哈斯日志介绍的本地信息管理的方法,不要使用标签来管理他们的知识。


    后来Tiago Forte 通过多年的研究实践,发现,“tags could be the missing link in making our knowledge collections truly adaptable – able to reorient and reconfigure themselves on the fly to enable any goal we wish to pursue”(标签连接可以使我们的知识库真能够即时重新定向和重新配置知识连接点到达任何目标,这种标签具备的自适应性是我们希望追求的)


    他在个人知识管理实践中做了方法论的思考总结和沉淀,并整理分享出来,我仔细阅读之后,对这些重要观点进行了阅读理解学习之后,进行了转述分享。不是严格意义的翻译、而是针对其中跟信息管理、知识管理的学习理解之后,按照我的理解和自己实践中的一些心得体会的糅合,借鉴融合,进行转述,因此并不严格契合原文,对这个方向有兴趣的同学,可以点击文末链接阅读原文。


    信息分类两种结构,层次结构与网络结构


    信息分层级结构映射了到物理世界组织、信息知识、社会等各种视角的存在形态和认识方法,各种我们需要通过分类体系来描述的东西,都可以分成这两种结构。但是这两种结构并不是绝对割裂的,

    (1)首先系统都是一个层次结构,在层次结构中有网络结构。

    (2)同时在网络中也会有一个或者多个层次结构,

    (3)网络结构和层次结构不是互斥的而是互相交融、相互促进、彼此平衡并相互补充。


    在系统结构中,层级结构是基础,他是系统部件耦合交互、相互作用的基础,大规模系统必然在层级结构中运行。但是按照严格学科制杜威十进制分类法,必然绝大多数人是不能够有效率地找到需要的信息、消费需要的信息的,大大制约了知识信息的传播和扩散。


    我们所处的信息技术高速发展的时代,互联网上数字信息的爆炸式增长,需要一种自下而上的自动化工具来理解大量数据和他们之间的关系,算法通过对网页分析关键字和超链接为网页分配重要性和建立其含义映射成为可能。Pagerank这是一种自底向上的算法方法,可从网络中获取含义,网络连接的锚点和标签互相赋权、互相赋予含义,而不是传统的人工判断,效率、规模空前提高。


    但是人们还是更使用习惯手动导航,以我的理解,手动导航(按目录、分类或者固定路径寻找的逻辑)为人们提供了一个具体的导航结构,其中包括文件夹和标签,使人们每一步操作可以逐步进行视觉反馈和控制。这种交互行为和确定的可预期,也使得人们更容易导航节点和目标关系、可控性好。


    他在介绍这一点的时候,用了一些很酷的描述,“Searching relies on declarative memory – remembering and entering the precise contents of a file ",意思就是想要搜索到,你先得知道有,还要知道有还得记得关键特征,这一点是非常难的。今天跟一个朋友聊信息获取的时候,谈到一个宏观数据,搜索和推荐达到相近用户覆盖规模的时间周期差快2倍。作者认为,“使用搜索获取信息高级大脑功能,会消耗大量能量,而手动导航依赖程序存储指定部分信息,识别线索和上下文并接收反馈,这种记忆利用大脑的“较旧”部分发展而来,以导航空间环境,因此更自然地获得反馈的信息出现在我们的脑海中”,有没有一股子熟悉的味道,这不就是推荐引擎么,通过一些初始化信号,信息不断被这些分类信号导航收敛、或者扩散,极大降低了“找到”信息或者文件的难度。


    人们还没有完全喜欢或熟悉搜索---通过扫描他们要查找的文件。但是仍然有一部分理性、追求效率的用户,他们在强烈追求信息关系线索,他们更习惯于更可驾驭的搜索模式,这么多年来很多人都尝试过window文件管理、mac文件管理上(哈斯日志此前介绍过几款本地文件信息管理工具,123),有些效率控们用各种基于搜索逻辑的工作帮助自己管理和高效率应用信息。


    层次结构和网络结构完全不同的特性


    层次结构的系统的弱点在于,不同层级知识信息点,会跟其他可能激发有趣联系的知识信息隔离开来,因此,在知识信息、文件系统中添加网络结构、关联可以帮助我们保留层次结构的优势,同时将其与交叉连接和关联相融合。


    网络结构典型特征就是每个交叉点---标签、或者图谱节点,这些节点彼此可以不断管理建立关系线索。而且这些节点可以聚拢成簇可以作为一个虚拟空间,将标签添加到相关空间、一系列的虚拟空间联系变成组。使它们更易于连接、共享和引用、检查校验。通过标签节点唤起我们对空间导航的直觉,以理解复杂的抽象主题。我们能够创建更具体的概念结构,并使用我们对知识管理和信息消费的过程进行导航。 


    Tiago Forte提到了“知识生命周期”概念,是知识向最终产品、应用迈进的一系列阶段:识别和发现、捕捉获取、验证知识、解构知识、组织知识、分类、传播、融合知识、创新知识、使用知识、重新评估知识。


    这个描述还是很准确的从我们发现识别,到获取形成认知记忆消化,转换成自己的知识体系的一部分,然后保存,调用传播、跟别的知识进行融合交互,创造出新的知识,再应用,重新评估,比如哈斯日志这篇文章,哈哈、





    信息映射和知识块


    在这个过程或获得消化这些知识和信息,最重要的其实提取关键特征、建立分类和场景管理、应用和召回的线索(哈斯日志之前有篇文章探讨人是怎么学习知识的,在这个点上可能讲述的更细,点此访问)。这篇文章提到了“信息映射”,是一种用于识别,分类和相互关联信息的系统,可以使你在复杂的,信息丰富的环境中更轻松地学习,它假定知识收集的总体目标是将其用于实际项目中。但是没有一种固定的预定用途。

        

    从向内和向外,两种视角看,信息映射有两种逻辑,(1)建立关系结构,场景/域下的对象和对象的描述(2)建立关联,基于domain关联、方向和连接权重。


    在我的方法论框架中,经常提到的一个词就是获取知识信息后要消化理解、内化成自己的知识点经验和认知,所谓“反刍”,并建立起跟应用场景的演绎,便于更深刻的理解、必要时更有效率地被从你的知识库里召回。Tiago Tiago Forte的文章里的观点,他把这个过程定义成:初步学习,重新学习或复习

    ,参考、简介和浏览, 更新变化用作工作辅助工具


    所有这些过程应用的知识信息可能是整体、也可能是局部,使用的方式不同、细节不同,这些信息是通过获取原始知识信息被标签分类和图谱之后,变成各种“信息块”,将这些块混合并匹配以适应特定需求。同一知识块可能在不同时间以不同方式使用。


    我觉得知识信息内容转化成自己知识、技能的过程过程:复述/转述,评价/发表自己的想法,应对实际客观情况应用信息和知识进入的推理、判断、行为、决策参考。


    抽象,把知识信息抽象成三维表示


    1969, Robert Horn 出版 “information mapping”,提到很多信息处理概念,其中作者引用了他和其他合作者确定了40种类型的信息块,可以将其归类为以下7种类型之一:Procedure、Process、Concept、Structure、Classification、Principle、Fact,我非常喜欢这段,跟阅粒的构造逻辑一致,每一个知识信息它在类型上怎么表示、在结构上怎么表示、在网络中怎么表示。


    Robert Horn等人的研究表明,在各种主题和知识信息项目中这一信息块特征都是标准化的,几乎任何主题的大约80%的信息都可以使用此系统进行分类。信息被片段化变成信息块,使用标签只是节点来创建一个相互交织的网络,在该网络中,可以在需要的时候从我们知识信息库中提取正确的“零件”(或注释),并且通过标签联接的关系。人们在学习知识信息、参考知识信息、建立应用关联上就非常灵活、更加轻松。这种方式可以让知识信息获取更尽可能地接近要解决的问题。


    每个人如何有效使用标签进行个人知识管理,作者提了四个建议,原文有大量的例子可以更详实的解读


    1. 根据所采取的行动或所创建的可交付成果来标记注释

    2. 逐步并仅在需要时添加结构,使用积累的经验来指导您需要什么结构,它可能也不是完美的,因为优先满足您的日常需求,并随着你的需要和添加进化

    3. 据笔记的内部,外部和社交环境以及状态标记笔记

    4. 开发定制的,特定于行业的分类法。如果我们想要有一个一刀切的方法适合所有、适合永远,这个是不现实的。

        充分结合自己的认知习惯经验和需求,建立一个不同阶段适配并且能不断进化的个人知识管理体系。


    轻量级的、有效的知识管理工具应该是怎样的?


    这段不是原作者的观点,是搜藏的广告。


    Tiago Forte这篇文章,作者旁征博引,从知识、信息发展史的社会学研究,维基百科等视角,进行了阐述和推进,其实核心的就是说,知识管理工具要轻量化、要个性化随需要随时代进化,但是核心的东西都是还是建立在分层结构和网络结构基础上的。


    搜藏APP就恰如其分地耦合了这个理论。


    搜藏APP是阅粒团队研发的一款基于轻量级个人知识管理工具,从个人角度,提供了一个基于需求的知识信息和数据资料存储私人智能个人信息助理。说它是智能,是因为搜藏小秘书提供了智能化信息主题分类、自动标签和多模态信息的处理,他能实现图片OCR识别文本做分类保存、能实现英文翻译中文做语意化处理。你看到对你来说重要的数据、资料和信息情报,可以保存到搜藏,形成自己的私域知识信息库。


    由搜藏小秘书微信bot,为你阅读理解,自动建立标签和分类。如果你针对这些信息有点自己的想法和观点,你可以直接针对内容发表,这些信息都保存由你的分类导航和标签组成的知识信息系统中,这些信息会成为系统帮你发现更多信息的触发点,也会成为你基于任何节点去发掘、组织、阅读信息,转换成自己的知识决策和行动指南的锚点。


    基于私域的知识信息库的线索,你的搜藏小秘书还会帮你在开放域抓取和发现更多优质资讯和知识信息,同时系统会根据你主题和内容特征为推荐小组,在小组内有一群人针对这些相关的信息分享他们的阅读、想法和观点。


    我们做搜藏其实,基于这样一个判断,人们对信息的需求,本质上是一种信号发现、组织加工、决策推理、并基于这些处理过程得出判断、和行动的指导。


    你有需要存的就保存。剩下的工作都是搜藏小秘书代你完成,这就是轻。轻量级、低成本,可以基于标签、分类、小组不断探索和挖掘更多更丰富的你还没有触及的、又是你想要的,来一起玩。


    欢迎使用体验(dl.yueli.com),跟我们一起探讨好用的知识管理工具,建立起自己的知识信息管理的方法、帮助自己更有效率地解决问题、自我提升!


    作者在原文里提到这几本书


    Ofer Bergman,Steve Whittaker ,《The Science of Managing Our Digital Stuff》

    Andy Clark,《Supersizing the Mind》


    有兴趣的同志们可以加运营小妹子微信iamsoucang,在搜藏上有个知识管理的小组,读书笔记小组,她会邀请你加入,大家来一起读书,交流分享自己的information mapping观点、知识管理的经验。

    标签: , , , ,

    This Written at 十二月 28, 2019 by loverty.  

    0条评论

    发表评论

    << Home